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Abstract
This paper provides an efficient analytical tool for solving the heat conduction
equation in a multi-dimensional composite slab subject to generally time-
dependent boundary conditions. A temporal Laplace transformation and novel
separation of variables are applied to the heat equation. The time-dependent
boundary conditions are approximated with Fourier series. Taking advantage of
the periodic properties of Fourier series, the corresponding analytical solution is
obtained and expressed explicitly through employing variable transformations.
For such conduction problems, nearly all the published works necessitate
numerical work such as computing residues or searching for eigenvalues
even for a one-dimensional composite slab. In this paper, the proposed
method involves no numerical iteration. The final closed form solution is
straightforward; hence, the physical parameters are clearly shown in the
formula. The accuracy of the developed analytical method is demonstrated
by comparison with numerical calculations.

PACS numbers: 02.10.Ud, 02.30.Jr, 05.60.Cd

1. Introduction

Composite materials play an important role in today’s industries. As a result, many engineering
problems require a detailed knowledge of temperature distribution and heat flux in a composite
slab. Examples exist in building physics, aerospace, thermodynamics, combustion, reacting
flow processes, heat transfer, insulating technology, unconfined groundwater flows, and many
others. Numerical methods are a common method of solving such problems; however,
analytical methods can provide a greater insight into the physical process and can be used
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to validate numerical models. Among heat conductions in the composite slab, two- and
three-dimensional conductions are the most important physical phenomena which need to
be theoretically or experimentally studied. Such conduction problems are often simplified
as extensions for one-dimensional geometry due to the highly complex nature of the multi-
dimensional systems. Three analytical techniques, Green function, the orthogonal expansion
and Laplace transform [1, 2] are often employed in tackling one-dimensional heat conduction.
The same analytical techniques are also applied to multi-dimensional systems.

Regarding the first two techniques, examples are the works by Salt [3, 4], Mikhailov
and Özisik [5] (the orthogonal expansion technique) and Beck [6] (the Green function).
There are some limitations in applying these techniques. First, the technique of separation
of variables often restricts boundary conditions. For example, the above-cited papers can
only deal with the homogeneous boundary conditions of the first and second kind in the
direction parallel to the layers. Second, associated eigenvalue problems are often inherited.
Computations of eigenvalues for the multi-dimensional composite slab exhibit a few special
features. The eigenvalues may become imaginary, so the corresponding eigenfuctions will
have imaginary arguments [6]. Moreover, attention must be paid when computing eigenvalues
since the spacing between successive eigenvalues varies between zero and the maximal value.
Numerically, the imaginary eigenvalues can produce instability [6]. In fact, the associated
eigenvalue problem is always complicated even for the one-dimensional composite slab [7].
With increasing layers, searching for eigenvalues may become so difficult as to be practically
impossible.

de Monte made a detailed review on such techniques in solving multi-dimensional heat
equations for the composite slab [8]. In that paper, the associated eigenvalue problem for
two-dimensional composites with two rectangular parallel layers was split up into two one-
dimensional eigenvalue problems. In the direction of the layers, the problem was a special
case of the Sturm–Liouville problem. However, in the direction perpendicular to the layers,
the problem was characterized by real and imaginary eigenvalues. Hence, the eigenfunctions
across the layers were chosen with the target to identify the stress ‘algebraic terms’ which
account for the heat conduction in the direction parallel to the layers and affect the thermal
field in another direction [8].

Regarding the third technique, the Laplace transform, calculations often yield residue
computation. For the composite slab, the computation is found by directly and numerically
searching for the roots of a hyperbolic equation, finding the derivatives of the equation, and
evaluating and summing the residues. The calculation procedure is tedious if the slab has more
than two layers [9], as numerical searching roots have to be made with very fine increment for
inverse Laplace transform to prevent missing roots which can lead to a wrong inverse.

Due to the above-discussed limitations, most of the published papers cannot deal with
non-homogeneous boundary conditions for heat conduction problems. And they need to
solve eigenvalue problems. The advantage over the numerical method is hard to discern. To
improve the analytical methods, a novel analytical method was developed recently to tackle
one-dimensional transient heat problems for a composite slab [10] and was later extended
to multi-dimensional geometry by adopting a novel technique of separation of variables
[11]. The boundary condition was presented as time-dependent temperature of the first
kind.

In this paper, the developed method is extended for more general boundary conditions.
The technique of separation of variables is used. The application of this technique, together
with an employment of variable transformations, is novel which exhibits features other
than the common ones, thus allowing for the complete range of boundary conditions to
be explored including non-homogeneous boundaries in the direction parallel to the layers.
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Figure 1. Schematic diagram of a two-dimensional composite slab.

The analytical approach in this paper presents a powerful method for solving multi-dimensional
heat conduction equations in a composite slab.

Compared to the work reviewed above, firstly, the boundary condition is given more
generally. Secondly, there is no need to numerically search for eigenvalues or to evaluate
residues. Most importantly, explicit solutions for a multi-dimensional n-layer composite slab
with general boundaries are available. The adopted method is efficient and straightforward.
And the analytical solution is concise and easy to apply. Further a comparison of the results
with numerical models demonstrates an application capability of the developed analytical
method.

2. Mathematical formulation

2.1. Governing equations

Consider an n-layer composite slab having constant thermal conductivity, diffusivity and
density in each layer. Each layer’s thermal conductivity, diffusivity and thickness are presented
as λj , kj and lj , j = 1, . . . , n. The basic geometry considered here is a two-dimensional slab
in x and y directions. The schematic figure is shown in figure 1.

So the layers have regional lengths l1, l2, . . . , ln. Denote Lj = l1 + · · · + lj , j = 1, . . . , n,
then the layer boundaries are x = L0 = 0, L1, . . . , Ln and y = 0,H . For simplicity, it is
assumed that H = 1.

The general heat conduction in the slab with the third kind boundary condition can be
described by the following equation for temperature Tj (t, x, y):

∂Tj

∂t
= kj

∂2Tj

∂x2
+ kj

∂2Tj

∂y2
, x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n. (2.1)

The boundary and initial conditions are

−λ1
∂T1

∂x
(t, L0, y) = −αS(T1(t, L0, y) − T∞(t)), y ∈ [0, 1], (2.2a)

Tj (t, Lj , y) = Tj+1(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (2.2b)

−λj

∂Tj

∂x
(t, Lj , y) = −λj+1

∂Tj+1

∂x
(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (2.2c)
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−λn

∂Tn

∂x
(t, Ln, y) = −αN(T∞(t) − Tn(t, Ln, y)), y ∈ [0, 1], (2.2d)

−λj

∂Tj

∂y
(t, x, 0) = −αE(Tj (t, x, 0) − T∞(t)), x ∈ [Ln−1, Ln], j = 1, . . . , n,

(2.2e)

−λj

∂Tj

∂y
(t, x, 1) = −αW(T∞(t) − Tj (t, x, 1)), x ∈ [Ln−1, Ln], j = 1, . . . , n,

(2.2f )

Tj (0, x, y) = 0, x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n. (2.2g)

Without losing generality, the boundary temperature is expressed as T∞(t) = cos(ωt + ϕ)

and the initial temperature is assumed to be zero. The surface heat transfer coefficients are
denoted as α with the subscripts representing different surfaces.

Even the homogeneous boundary condition of the third kind can produce mathematical
incompatibilities in the direction parallel to the layers [8]; hence, only the first- and the second-
kind boundary in the y-axis are considered. Therefore, αE and αW are assumed to be zero or
∞ (first and second kinds) which lead to four boundary conditions in the y-direction, namely:

y-boundary-1: αE = ∞, αW = ∞, (2.3a)

y-boundary-2: αE = ∞, αW = 0, (2.3b)

y-boundary-3: αE = 0, αW = 0, (2.3c)

y-boundary-4: αE = 0, αW = ∞. (2.3d)

2.2. Calculation procedures

We approach the analytical solutions by the following steps:

• Assume the boundary temperature as its complex form T∞(t) = eiωt+iϕ . Clearly, the
solution of equations (2.1), (2.2) is the real part of the sought-after solution. If there is
no danger of confusion we shall keep the same notations for the complex form of the
boundary temperature.

• Reduce the two-dimensional problems into one-dimensional so that the available one-
dimensional results can be applied. While the technique of separation of variables is a
common method in tackling multi-dimensional homogeneous heat equations, this paper
applied the technique in a new way accounting for the non-homogeneity of the boundaries.

• Mathematically, cases with y-boundary-2 and y-boundary-4 in equation (2.3) are the same.
Therefore, we shall only consider three boundary conditions in the y-axis (y-boundary-1
to y-boundary-3). Closed form solutions will be provided for these boundary conditions.

3. Solutions to the first y-boundary condition

The first y-boundary condition assumes that αE , αW = ∞. Then the boundary condition in
the y-axis becomes (see equations (2.2e)–(2.2f )):

Tj (t, x, 0) = T∞(t) = eiwt+iϕ, x ∈ [Ln−1, Ln], j = 1, . . . , n, (3.1a)

Tj (t, x, 1) = T∞(t) = eiwt+iϕ, x ∈ [Ln−1, Ln], j = 1, . . . , n. (3.1b)

In the following, we shall only write x ∈ [Ln−1, Ln], j = 1, . . . , n, if it is necessary.
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3.1. Homogenizing the equations

The equation system has non-homogeneous boundary conditions. To homogenize, a new
variable is introduced as

Uj(t, x, y) = Tj (t, x, y) − T∞(t). (3.2)

This leads to the following non-homogeneous heat equation

∂Uj

∂t
+ T ′

∞(t) = kj

∂2Uj

∂x2
+ kj

∂2Uj

∂y2
, x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n.

(3.3)

with homogeneous boundary conditions

−λ1
∂U1

∂x
(t, L0, y) = −αSU1(t, L0, y), y ∈ [0, 1], (3.4a)

Uj(t, Lj , y) = Uj+1(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (3.4b)

−λj

∂Uj

∂x
(t, Lj , y) = −λj+1

∂Uj+1

∂x
(t, Lj , y), y ∈ [0, 1], j = 1, . . . , n − 1, (3.4c)

−λn

∂Un

∂x
(t, Ln, y) = αNUn(t, Ln, y), y ∈ [0, 1], (3.4d)

Uj(t, x, 0) = 0, x ∈ [Ln−1, Ln], j = 1, . . . , n, (3.4e)

Uj(t, x, 1) = 0, x ∈ [Ln−1, Ln], j = 1, . . . , n, (3.4f )

Uj(0, x, y) = −T∞(0), x ∈ [Lj−1, Lj ], y ∈ [0, 1], j = 1, . . . , n. (3.4g)

3.2. Separating variables

Observing the common applications of separation of variables, the homogeneity of the
system is needed so that the variables can be separated and the dimension can be reduced.
Unfortunately, the heat equation here (equation (3.3)) does not have such a property. Therefore,
in the following we shall separate the variables in an unusual way.

Assume ‘separation of variables’ can be used as

Uj(t, x, y) = Xj(t, x)Yj (y), (3.5)

where Yj (y) is a variable-separated function which satisfies the homogeneous form of
equation (3.3). Then substituting Yj (y) into the homogeneous form of equation (3.3) results
in

function of x and t = kjY
′′
j

Yj

. (3.6)

Setting each side of the above equation equal to −µ2
j gives

Y ′′
j +

µ2
j

kj

Yj = 0. (3.7)

The general solution Yj is easily written as

Yj (y) = Aj sin

(
µj√
kj

y

)
+ Bj cos

(
µj√
kj

y

)
. (3.8)
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Note that the boundary conditions (3.4e), (3.4f ) are satisfied if Yj (0) = 0 and Yj (1) = 0
which lead to

µj√
kj

= mπ or µjm = mπ
√

kj and Yjm(y) = Ajm sin

(
µjm√

kj

y

)

or Ym(y) = sin(mπy), m = 1, . . . ,∞.

(3.9)

The solution Uj in equation (3.5) can then be expressed as

Uj(t, x, y) =
∞∑

m=1

Xjm(t, x)Ym(y) =
∞∑

m=1

Xjm(t, x) sin(mπy). (3.10)

Note that the unknown coefficient Ajm in equation (3.9) is embedded in Xjm in
equation (3.10).

3.3. One-dimensional heat equation in x-variable

Unlike most of the conventional works, the corresponding heat equation for the x-variable
cannot be obtained straightforward. We now give the details on how to approach the equation
for x-variable. We shall omit writing m = 1, . . . ,∞ if it cannot cause confusion.

Note that Ym are orthogonal functions. Representing 1 as a sum of Ym, the heat
equation (3.3) is then obtained as

∞∑
m=1

∂Xjm

∂t
Ym + T ′

∞(t)

∞∑
m=1

bmYm = kj

∞∑
m=1

∂2Xjm

∂x2
Ym −

∞∑
m=1

µ2
jmXjmYm, (3.11a)

where

bm = 2(1 − cos(mπ))

mπ
. (3.11b)

Simplification of the above equation (3.11a) gives

∂Xjm

∂t
+ bmT ′

∞(t) = kj

∂2Xjm

∂x2
− µ2

jmXjm. x ∈ [Ln−1, Ln], j = 1, . . . , n. (3.12)

Similarly, the boundary and initial conditions are derived from equations (3.4a)–(3.4g) as

−λ1
∂X1m

∂x
(t, L0) = −αSX1m(t, L0) (3.13a)

Xjm(t, Lj ) = X(j+1)m(t, Lj ), j = 1, . . . , n − 1, (3.13b)

−λj

∂Xjm

∂x
(t, Lj ) = −λj+1

∂X(j+1)m

∂x
(t, Lj ), j = 1, . . . , n − 1, (3.13c)

−λn

∂Xnm

∂x
(t, Ln) = αNXnm(t, Ln), (3.13d)

Xjm(0, x) = −bmT∞(0), x ∈ [Ln−1, Ln], j = 1, . . . , n, (3.13e)

where T∞(t) = eiωt+iϕ .
Note that equation (3.13e) is obtained by expressing 1 as a sum of Ym in equation (3.4g).

It can be observed that the derived one-dimensional heat equation for x-variable exhibits quite
a different mathematical form than the original multi-dimensional equation does.
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3.4. Analytical solution to one-dimensional equation in x-variable

3.4.1. Simplification of the equations. By introducing the new variable

Vjm = Xjm +
iωbm

µ2
jm + iω

T∞(t) +
µ2

jmbm

µ2
jm + iω

e−µ2
jmt+iϕ, (3.14)

equation (3.12) becomes

∂Vjm

∂t
= kj

∂2Vjm

∂x2
− µ2

jmVjm, x ∈ [Ln−1, Ln], j = 1, . . . , n, (3.15)

with boundary and initial conditions

−λ1
∂V1m

∂x
(t, L0) = −αS(V1m(t, L0) − G1m), (3.16a)

Vjm(t, Lj ) = V(j+1)m(t, Lj ), j = 1, . . . , n − 1, (3.16b)

−λj

∂Vjm

∂x
(t, Lj ) = −λj+1

∂V(j+1)m

∂x
(t, Lj ), j = 1, . . . , n − 1, (3.16c)

−λn

∂Vnm

∂x
(t, Ln) = αN(Vnm(t, Ln) − Gnm), (3.16d)

Vjm(0, x) = 0, x ∈ [Ln−1, Ln], j = 1, . . . , n, (3.16e)

where

T∞(t) = exp(iωt + iϕ), (3.16f )

G1m(t) = iωbm

µ2
1m + iω

T∞(t) +
µ2

1mbm

µ2
1m + iω

e−µ2
1mt+iϕ, (3.16g)

Gnm(t) = iωbm

µ2
nm + iω

T∞(t) +
µ2

nmbm

µ2
nm + iω

e−µ2
nmt+iϕ. (3.16h)

3.4.2. Laplace transform of the equations. A very similar type of one-dimensional equations
has been studied by Lu et al [10]; the implication of which is that the functions G1m(t) and
Gnm(t) may be considered as ambient temperature change. Lu et al suggested a method of
Laplace transform on solving such equations.

Applying Laplace transform on equation (3.15) we get

sV̄jm = kj

∂2V̄jm

∂x2
− µ2

jmV̄jm, x ∈ [Ln−1, Ln], j = 1, . . . , n (3.17)

with boundary conditions

−λ1
∂V̄1m

∂x
(s, L0) = −αS(V̄1m(s, L0) − (s)), (3.18a)

V̄jm(s, Lj ) = V̄(j+1)m(s, Lj ), j = 1, . . . , n − 1, (3.18b)

−λj

∂V̄jm

∂x
(s, Lj ) = −λj+1

∂V̄(j+1)m

∂x
(s, Lj ), j = 1, . . . , n − 1, (3.18c)

−λn

∂Vnm

∂x
(s, Ln) = αN(V̄nm(t, Ln) − Ḡnm(s)). (3.18d)
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A bar over a function f (t) designates its Laplace transform on t (e.g. [1]):

f̄ (s) = L(f (t)) =
∫ ∞

0
exp(−sτ )f (τ ) dτ. (3.19a)

The Laplace transform of a convolution is given by

L(f1(t) ∗ f2(t)) = f̄ 1(s)f̄ 2(s) where f1(t) ∗ f2(t) =
∫ t

0
f1(τ )f2(t − τ) dτ. (3.19b)

3.4.3. Solutions to the equations. The general solution of equation (3.17) is obtained as

V̄jm = Ajm sinh(qjm(x − Lj−1)) + Bjm cosh(qjm(x − Lj−1)), (3.20)

where Ajm and Bjm are determined with boundary conditions and

qjm =
√

s

kj

+
µ2

jm

kj

=
√

s

kj

+ m2π2. (3.21)

Setting ξjm = qjmlj for j = 1, . . . , n, and hj = λj+1

λj

√
kj

kj+1
for j = 1, . . . , n−1, the coefficients

Ajm and Bjm in equation (3.20) are determined by the boundary conditions (3.18a)–
(3.18d) as

λ1q1mA1m − αSB1m = −αSG1m (3.22a)

Ajm sinh ξjm + Bjm cosh ξjm − B(j+1)m = 0, j = 1, . . . , n − 1, (3.22b)

Ajm cosh ξjm + Bjm sinh ξjm − hjA(j+1)m = 0, j = 1, . . . , n − 1, (3.22c)

AnmhAm + BnmhBm = αNGnm, (3.22d)

where

hAm = λnqnm cosh ξnm + αN sinh ξnm, hBm = λnqnm sinh ξnm + αN cosh ξnm. (3.22e)

The coefficients Ajm and Bjm, j = 1, . . . , n, can be solved by Cramer’s rule as follows: let

	(s) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1q1m −αS 0 0 0 0 · · · 0 0 0 0
sinh ξ1m cosh ξ1m 0 −1 0 0 · · · 0 0 0 0
cosh ξ1m sinh ξ1m −h1 0 0 0 · · · 0 0 0 0

0 0 sinh ξ2m cosh ξ2m 0 −1 · · · 0 0 0 0
0 0 cosh ξ2m sinh ξ2m −h2 0 · · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 · · · sinh ξ(n−1)m cosh ξ(n−1)m 0 −1
0 0 0 0 0 0 · · · cosh ξ(n−1)m sinh ξ(n−1)m −hn−1 0
0 0 0 0 0 0 · · · 0 0 hAm hBm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(3.23a)

	1(s) =

∣∣∣∣∣∣∣
	(s) with

row − 1 column − 2j − 1
deleted

∣∣∣∣∣∣∣
	(s)

, 	2(s) =

∣∣∣∣∣∣∣
	(s) with

row − 2n column − 2j − 1
deleted

∣∣∣∣∣∣∣
	(s)

, (3.23b)

	3(s) =

∣∣∣∣∣∣∣
	(s) with

row − 1 column − 2j

deleted

∣∣∣∣∣∣∣
	(s)

, 	4(s) =

∣∣∣∣∣∣∣
	(s) with

row − 2n column − 2j

deleted

∣∣∣∣∣∣∣
	(s)

. (3.23c)
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Then

Ajm = −αSG1m	1 − αNGnm	2, Bjm = αSG1m	3 + αNGnm	4. (3.24)

Without showing all calculation details, we give the closed form solution. More details can
be found in Lu et al [10].

Put

Mjm(s, x) = −αS	1 sinh(qjm(x − Lj−1)) + αS	3 cosh(qjm(x − Lj−1)), (3.25a)

Njm(s, x) = −αN	2 sinh(qjm(x − Lj−1)) + αN	4 cosh(qjm(x − Lj−1)). (3.25b)

Equation (3.20) is obtained as

V̄jm = MjmG1m + NjmGnm, x ∈ [Lj−1, Lj ], j = 1, . . . , n. (3.26)

The inverse function of V̄jm can be approximated as

Vjm(t, x) = iωbm

µ2
1m + iω

Mjm(iω, x) eiωt+iϕ +
iωbm

µ2
nm + iω

Njm(iω, x) eiωt+iϕ

+
µ2

1mbm

µ2
1m + iω

Mjm

(−µ2
1m, x

)
e−µ2

1mt+iϕ +
µ2

nmbm

µ2
nm + iω

Njm

(−µ2
nm, x

)
e−µ2

nmt+iϕ.

(3.27)

3.4.4. Final solutions. From equations (3.2), (3.10), (3.14) and (3.27), we can simplify the
solution as

Xjm(t, x) = µ2
1mbm

µ2
1m + iω

Mjm

(−µ2
1m, x

)
e−µ2

1mt+iϕ − µ2
jmbm

µ2
jm + iω

e−µ2
jmt+iϕ

+
µ2

nmbm

µ2
nm + iω

Njm

(−µ2
nm, x

)
e−µ2

nmt+iϕ +

(
iωbm

µ2
1m + iω

Mjm(iω, x)

− iωbm

µ2
jm + iω

+
iωbm

µ2
nm + iω

Njm(iω, x)

)
eiωt+iϕ (3.28)

and

Tj (t, x, y) = real

( ∞∑
m=1

Xjm(t, x) sin(mπy)

)
+ cos(ωt + ϕ). (3.29)

where real denotes the real part and Xjm(t, x) is given in equation (3.28).

3.5. General boundary temperatures

For a more general boundary temperature T∞(t), we approximate it as Fourier series
T∞(t) = a0 +

∑∞
k=1 ak cos(ωkt + ϕk). Due to the linear property of the equations, the

solution is the sum of that with the constant boundary temperature a0 and with the boundary
temperature

∑∞
k=1 ak cos(ωkt + ϕk) which can be copied from the above-discussed theory.

For the constant boundary T∞ = a0, equation (3.26) is written as

Vjm =
(

iωbm

µ2
1m + iω

Mjm +
iωbm

µ2
nm + iω

Njm

)
a0

s
+ · · · . (3.30)
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The omitted term presents the solutions with the periodic temperature boundary which is
easily obtained from equation (3.29). As the matrix determinant Mjm or Njm is the function
of hyperbolic functions sinh and cosh which can be approximated by power series, a simple
linearization of equation (3.30) gives

Vjm ≈ const

const 1 ∗ s + const 2
. (3.31)

The inverse Laplace transform of the above equation is then

Vjm = const

const 1
exp

(
−const 2

const 1
t

)
. (3.22)

Hence, the final solution can be explicitly obtained.
Another simpler way of finding the solution for an equation with constant boundary

change is ignoring the transient term which will die away if studies do not focus very much
on the initial temperature change.

4. Solutions to the second y-boundary condition

The second y-boundary condition requires that αE = ∞, αW = 0. Then the boundary
condition in the y-axis becomes (see equations (2.2e), (2.2f )):

Tj (t, x, 0) = T∞(t) = eiωt+iϕ, x ∈ [Ln−1, Ln], j = 1, . . . , n, (4.1a)

∂Tj

∂y
(t, x, 1) = 0. x ∈ [Ln−1, Ln], j = 1, . . . , n. (4.1b)

The solution procedure can follow the theory developed for the first y-boundary condition.
Hence we shall only present essential details in the following.

By introducing a new variable as equation (3.2) we reach the same equation system as
equations (3.3), (3.4) except equation (3.4f ) which is of the form

∂Uj

∂y
(t, x, 1) = 0, x ∈ [Ln−1, Ln], j = 1, . . . , n, (4.2)

Separating variables requires
µj√
kj

= (
m + 1

2

)
π or µjm = (

m + 1
2

)
π

√
kj and

Yjm(y) = Ajm sin
((

m + 1
2

)
πy

) = Ym(y), m = 1, . . . ,∞.

(4.3)

The solution Uj can be written as

Uj(t, x, y) =
∞∑

m=1

Xjm sin

((
m +

1

2

)
πy

)
. (4.4)

Using the orthogonal property of Ym to express 1 as a sum of Ym, we get exactly the same
equation (3.11a) for x-variable except that µjm and bm are given in equation (4.3) and the
following, respectively:

bm = 2
(
1 − cos

(
mπ + π

2

))
(2m + 1)π

, m = 1, . . . ,∞. (4.5)

Therefore, the closed form solution can be expressed as equations (3.28), (3.29) with the
corresponding parameters µjm and bm.
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Material 1, 2, 3 

Figure 2. Schematic diagram of the three-layer composite slab.

5. Solutions to the third y-boundary condition

The third y-boundary condition requires that αE = 0, αW = 0. Then the boundary condition
in the y-direction becomes (see equations (2.2e), (2.2f )):

∂Tj

∂y
(t, x, 0) = 0, x ∈ [Ln−1, Ln], j = 1, . . . , n, (5.1a)

∂Tj

∂y
(t, x, 1) = 0, x ∈ [Ln−1, Ln], j = 1, . . . , n. (5.1b)

Due to the adiabatic property in the y-axis, the equation system is reduced to the one-
dimensional heat conduction in the composite slab which has been studied by Lu et al [10].

6. Calculation examples

6.1. Example description

This study has stemmed from a number of problems faced in our building physics research. At
the moment, moisture is one of the primary causes of damage observed in building structures,
increasing the importance of the development of research with the aim of finding regulations
concerning the design of building walls with respect to moisture. One obvious concern is
the control of the evolution of the moisture levels inside walls subject to the interior and
exterior climatic conditions. For this purpose, we need to pursue analytical solutions so that
investigation can take place into how the methodology described herein can be used to study
equations such as the effects of parameter changes. The accuracy of the determination of the
temperature distributions has an important effect on the final results of moisture calculations.
Hence, we developed closed form analytical solution for heat conduction in composite slabs
(building walls) as a starting point. Its accuracy is evaluated in this section by comparing the
results with the numerical models.

A three-layer composite slab was selected as a calculation example. The composition
has been used as the exterior wall in our test house. Figure 2 shows a schematic picture and
table 1 illustrates the material properties of the composition.

The boundary temperature was taken from our laboratory measurement and fitted with
periodic functions with periods 30, 5, 2 and 1 days as

T∞(t) = a0 +
4∑
1

ai cos

(
2πt

ωi

− ϕi

)
, (6.1)
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Figure 3. Boundary temperature changes.

Table 1. Material properties of the composite slab.

Thermal conductivity Thermal diffusivity Thickness
Material (W m−1 K−1) (m2 s−1) (mm)

1 0.12 1.5 × 10−7 25
2 0.0337 1.47× 10−6 200
3 0.23 4.11× 10−7 13

Table 2. Parameters of equation (6.1).

ω1 30.0 ω2 5.0 ω3 2.0 ω4 1.0
ϕ1 5.607 506 ϕ2 13.595 96 ϕ3 1.451 539 ϕ4 5.418 717

a0 5.0 a1 2.722 17 a2 −5.019 664 a3 1.084 058 a4 0.4648

where fitting parameters are listed in table 2 and the graph is demonstrated in figure 3.
Convective heat transfer coefficients were assumed to be αN = 25 W m−2 K−1 and αS =
6 W m−2 K−1.

6.2. Accuracy of the numerical model

As the analytical solution for the heat conduction in the three-layer composite is not available
in general heat transfer contexts, we have to confine ourselves into a very simple case where
the analytical solution is possible, for example a one-dimensional heat equation with first
kind boundary. The comparison of a 100 terms truncation of the analytical solution with
the numerical result shows a maximum error percentage of 0.2% [12]. The validation of the
numerical model by experiments can be found in [13–15].

6.3. Comparison with the numerical model

Calculation was made at the central point of material 2. Figure 4 presents the comparison of the
transient temperature variation using the analytical and numerical methods. The temperatures



A novel and efficient analytical method for calculation of the transient temperature field 8349

-4.0

0.0

4.0

8.0

12.0

16.0

0 1 2 3 4 5 6

Time (day)

T
em

p
er

at
u

re
 (

°C
) Numerical

Analytical

Figure 4. Comparison of the analytical and numerical results in the three-layer composite slab.

Material 1, 2, 3, 4, 5 

Figure 5. Schematic diagram of the five-layer composite slab.

were stored in files as hourly values and shown in figures as hourly and daily values. The
maximal discrepancy is within 0.49 ◦C (relative error of 3%).

6.4. Another example

To demonstrate the capability of the analytical method, the three-layer composition in figure 2
is extended into the five-layer displayed in figure 5. The material properties are exhibited
in table 3. A calculation was made at the centre of material 2. All other physical and
environmental conditions were kept the same. The comparison results are shown in figure 6.
The maximal discrepancy is within 1.8 ◦C with a relative error of 6%. The calculation example
demonstrates a high accuracy of the developed solution.

6.5. Advantages over numerical models

For any jth layer of the composition, the attenuated temperature amplitude and time lag are
able to be evaluated with the matrix determinants M and N in equation (3.25). Moreover, if
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Figure 6. Comparison of the analytical and numerical results in the five-layer composite slab.

Table 3. Material properties of the composite slab.

Thermal conductivity Thermal diffusivity Thickness
Material (W m−1 K−1) (m2 s−1) (mm)

1 0.12 1.5 ×10−7 50
2 0.0337 1.47×10−6 200
3 0.9 3.75×10−7 200
4 0.147 1.61×10−7 200
5 0.23 4.11×10−7 20

M and N are expressed algebraically as functions of material physical properties, for example
thermal diffusivity, the effect on the solution of material physical parameters can be analysed.
Such analysis cannot be performed with numerical models. Due to space constraints, we are
not going to do such thermal analysis with the analytical model.

Moreover, the developed method is easier to implement and a possible instability in the
numerical method is avoided. We have also made calculations on the three-dimensional case;
no substantial change was found, yet the calculation load was much smaller and the computing
time was much shorter compared with those when the numerical method was employed.

7. Conclusions

An analytical method was developed for solving multi-dimensional heat equations in the
composite slab subject to generally time-dependent boundary conditions. This approach, based
on the techniques of Laplace transform and separation of variables, made an approximation in
calculating the inverse Laplace transformation and as a result a residue evaluation was avoided.
The closed form solution formulae are obtained which are generally lacking in the literature
due to the involvement of numerical procedures in searching eignevalues and residues. The
solution formulae provide an insight into interplay between amplitude decays, time lags and
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other physical parameters, and can lead to better understanding of the thermal process in the
composite slab. The range of applications is wide. Furthermore, agreement with numerical
solutions is good. The method is easily extended to the three-dimensional composite slab
without enduring any more computing load. In comparison with the numerical methods, the
computing time is dramatically reduced especially in three-dimensional systems. Therefore,
the analytical approach proves to be a powerful method for the study and the simulation of
heat transfer phenomena in the composite slab.

It is worth mentioning that it is known that any periodic function can be represented as a
Fourier series. A non-periodic function can be approximated as a Fourier series in the extended
interval. For both the periodic and non-periodic functions, transient heat conduction must be
solved during a short time interval compared with its period. Therefore, the solution results
obtained in this paper are the transient solutions for general boundary conditions though
the expressions are formulated with periodic functions, as demonstrated in the calculation
example.

Finally, it is easy to observe that the calculation includes only simple computation of the
matrix determinant. For any jth layer, only five sparse matrices are involved. The calculation
load is small.
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